BOUNDARY-LAYER THEORY APPLIED TO HIGH
INJECTION RATES

E. A. Gershbein and V. N. Filimonov UDC 532.517.2

The equations of an isothermal laminar multicomponent boundary layer are solved numeri-
cally for both velocity and concentration profiles at high injection rates. The results are
evaluated comparatively.

We consider the isothermal flow of an incompressible multicomponent gas in a laminar boundary
layer with a negative pressure gradient and a high injection number ¢ ~ VRe(pv)y/(pV). The stream in
the boundary layer with heavy distributed injection can be divided into two regions [1-7]: 1) the inner re-
gion adjacent to the solid surface, where viscosity effect are negligible (to the first approximation); and 2)
the "uplifted" viscous region with a transition from the inner-layer flow mode to the ideal-gas flow mode
outside the boundary layer.

Self-adjoint flow modes were studied in [1-5]. Nonself-adjoint solutions to the boundary-layer equa-
tions were analyzed in [6, 7]. In [6], moreover, an asymptotic solution has been obtained to the Prandtl
equation for a homogeneous incompressible fluid. Asymptotic formulas have also been obtained in [7] for
the friction coefficient, for the thermal flux and the diffusion current in the fluid mixture components at
the solid surface, and equations have been derived describing the flow of a compressible multicomponent
gas in the sublayer region of a boundary layer. In our study here these equations will be solved for the
isothermal flow of a multicomponent gas. A numerical solution will be given to the problem of gas flow in
boundary layers of a sphere and of a circular cylinder.

1. The equations of a laminar isothermal multicomponent boundary layer, in the Dorodnitsyn—Lies
variables
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System (1.1) is solved for the following boundary conditions:

f;'—>l, ;> Ci(i=1, ..., n) as Mn—>oo, (1.2)
F28; =0, f,=0,
Q@) @, —cM =X, 4=1 ..., n) for qn=0.

Here cg‘) denotes the mass concentration of the i-th component in the injected gas mixture and

g
DE)=— —lgfx%* (00),- (1.3)
Relation (1.3) can be rewritten as
x(§)
fE 0 =—a)=— —V%—-E— j * (pv),, dx. (1.4)
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2. We consider now the asymptotic solution to Eq. (1.1) at high values of the injection number . It
can be shown [7] that in this case near the solid surface Eqgs. (1.1) reduce (in the first approximation) to
(¥ + 280,) o + B (/P — @) =280 9%, (2.1)
(b + 289;) ¢, = 2@, (=1, ..., n—1) (2.2)

with the boundary conditions at ¢ = 0

¢ =1, (p&:O, G=c (=1 ...,n=1. (2.3)
Here
¢ =f/fE 0), L=/ 0, $=CE)/(E 0). (2.4)

It will be assumed further that the medium is incompressible and that the concentrations cgl) do not depend
on ﬁ:

c(E) =const (i =1, ..., n—1) (2.5)
The solution to Eqs. (2.2) with conditions (2.3) will then be
& OD=cb (=1L ..., n),p@E L) =p, (2.6)
Let us now analyze Eq. (2.1). We introduce here new variables
Z=9;pulpe 2=9G ). (2.7)
Then Eq. (2.1) and conditions (2.3), with (2.5) taken into account, become
VYoZy — 28Zy =2B(Z —1), (2.8)
Z=0 for =1 (2.9)
It is not difficult to see that function Z has the simple physical meaning:
Z = pttlp i . (2.10)
The solution to Eq. (2.8) with condition (2.9) is
x
Z =1—exp (5 —:7 dg’) . (2.11)

R
Here function 7(£, ¢) is determined from the equation
Ea? (8) % = 1o (1), (2.12)



where function «, in turn, is defined by expression (1.4).

Expressing 8 in terms of £ and u, again, we rewrite solution (2.11) as follows:

Z=1—u [v[E () 9]} /2 (B): (2.13)
With the aid of relations (2.4), (2.7), and (2.13), we obtain
Q
n—a (@) (o) j £ (2.14)
»
1

Here ¢ varies over the range 0 = ¢ = 1,
The equation of the flow separatrix is obtained by letting ¢ = 0 at the upper limit of the integral:

1
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3. For illustration, we will consider the solution for the isothermal gas flow in the boundary layer
of a circular cylinder and a sphere: ug = [(k + 2}/ (k + 1)]Us siné.

a) When a cylinder is immersed in the stream (k = 0), then
W =g — g, 8 =1/2(1—cos0), u = u,/4Us. (3.1)

1°. If (pv)w = const, then

FE 0) = —a(®=—a(0) [arccos(1-28)]/ V2, (3.2)
@ (0) = ¥'Re (00),,/2(0U)x, Re =2UcR/Veo.
Inserting the first expressions in (3.1) and in (3.2) into (2.12) and then solving for 7 will yield
T=12{1 - cos [cparccos(l—QE“)]}. (3.3)
Formula (2.13) with (3.3) becomes then
sin® [@ arc cos (1— 2£°))
g — Zoz
Inserting (3.4) into (2.14) yields coordinate n as a function of ¢.

Z=1-1/4 . (3.4)

2°. H the specific flow rate of gas through the surface is distributed so that f(£, 0) = const, ({pv)y
==2f(&, 0)(pU)y cos (6/2) Re‘i/z), then (2.13) can be written as

Z =1 (1 (1 &) 3.5
b) When a sphere is immersed (k = 1), then we have

u'gz =9/4 {1—~4cos® 1/3 [arc cos(E® —1) - 431]} ,

80 =1 1/2c0s B (cos?0 —3), & = ue/ % U., {3.8)

1 —4cos? {13 [arc cos{t — 1) + 4:1]}
Z=1- T—4cos? | 1/3 Jarc cos (€0 — 1) +4a]}

Here for f(¢, 0) we have
(3.7)-

T = E¢?
and, if (pv)y = const,
T=1+cos 3arccos 1/2 {1+ ¢ [2cos 1/3 {arccos (§° —1) + 4o} —1]} (3.8)

Thus, expressions (2.14) and (3.4) or (3.5) for an immersed cylinder and expressions (2.14), (3.6},
and (3.7) or (3.8) for an immersed sphere will completely define the flow in the sublayer region of a bownd-
ary layer.
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Fig. 1. Velocity profile u/u, across the boundary layer: a)
around a cylinder at four sections [1) £ = 0; 2) 0.3; 3) 0.4; 4)
0.45]; b) around a sphere [1) 6 = 0; 2) 1.25; 3) 1.41 rad]. In-
jection number a =5, p = pg =py. Solid lines) Numerical so-
lution; dashed lines) asymptotic solution.

4. Equations (1.1) with the boundary conditions (1.2) were solved by the numerical method in [7] with
the aid of a digital computer. Considered were: 1) flow of a homogeneous incompressible fluid in the bound-
ary layers of a sphere and a circular cylinder, respectively; and 2) isothermal flow of a gas mixture con-
taining hydrogen, nitrogen, and carbon dioxide in the boundary layer of a sphere. In both cases the injec-
tion number was assumed constant and its value was varied over the range 0 = o = 10 for different sets
of computations.

Furthermore, in the second case it was assumed that the concentrations of injected H,, N,, and
CO, gases were constant along the generatrix of the sphere (c?) = const).

In Fig. 1la are shown velocity profiles u/ U, across the boundary layer around a cylinder at four sec-
tions. It is noteworthy that the velocity profiles calculated numerically and those based on the asymptotic
solution overlap almost across the entire boundary layer when the injection number is o = 7.

In Fig. 1b are shown analogous velocity profiles across the boundary layer of a sphere at three sec~
tions: 6 =0, 1.25, and 1.41 rad (curves 1, 2, 3, respectively),

Velocity profiles u/ug and density profiles p/p, across the boundary layer of a sphere immersed
in an H, + Ny, + CO, mixture are shown in Fig. 2 at three sections: § =0, 1.25, and 1.41 rad (curves 1, 2, 3,
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respectively), It is to be noted that the concentrations of the gas components at the solid surface become
approximately equal to their concentrations in the injected mixture (cjy, ~ cgl)) when the injection number
is within the range @ = 2-3, As the injection number increases, near the solid surface there will appear a
region where c;(§, ) = cjyy. Here the velocity profile based on the asymptotic solution will overlap with
the velocity profile calculated numerically. The width of this region is accurately enough determined from
formula (2.15).

NOTATION
X, ¥ are the coordinates, along the body surface and normal to the body surface,
respectively;
a, v are the velocity components;
r is the distance from the symmetry axis of the body;
k=0 is for two-dimensional flow;
k=1 is for flow with axial symmetry;
I is the density of gas;
u is the dynamic viscosity of gas;
m is the molecular weight of gas;
ci is the mass concentration of i-th component;
I is the diffusive mass current of i-th component;
m; is the molecular weight of i-th component;
Dij is the binary diffusion coefficient;
Sij is the Schmidt number;
&, n are the Dorodnitsyn—Lies variables;
f}) = u/ue;
Xi= (rk\/—ﬁ/‘é)'{)fi;
I=po/pepe;

B = (2£/u,)(dug/dé);
B(E) = — (rKVIE/ £ )0V, -

Subscripts

e denotes the outside edge of the boundary layer;
denotes the solid surface (wall).
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